Peer-reviewed Publications

For a full list including links, please see Drew's Google Scholar page
  1. F. Ismail, A. Abdellah, H. Lee, V. Sudheeshkumar, W. Alnoush, D. Higgins*, “Impact of Nickel Content on the Structure and Electrochemical CO2 Reduction Performance of Nickel–Nitrogen–Carbon Catalysts Derived from Zeolitic Imidazolate Frameworks”, ACS Applied Energy Materials, Accepted (2022).

  2. Y. Kim, S. Xu, J. Park, A. Dadlani, O. Vinogradova, D. Krishnamurthy, M. Orazov, D. Lee, S. Dull, P. Schindler, H. Han, Z. Wang, T. Graf, T. Schladt, J. Mueller, R. Sarangi, R. Davis, V. Viswanathan, T. Jaramillo, D. Higgins* (corresponding author), F. Prinz, “Improving Intrinsic Oxygen Reduction Activity and Stability: Atomic Layer Deposition Preparation of Platinum-Titanium Alloy Catalysts”, Applied Catalysis B: Environmental, 300 (2021) 120741.

  3. A. Hitchcock, C. Zhang, H. Eraky, L. Shahceraghi, F. Ismail, D. Higgins, “In situ and operando studies with soft X-ray transmission spectromicroscopy”, Microscopy and Microanalysis, 27 (2021) 59.

  4. H. Lee, A. Abdellah, F. Ismail, C. Gumeci, N. Dale, J. Parrondo, D. Higgins, Understanding the impact of nitrogen doping and/or amine functionalization of reduced graphene oxide via hydrothermal routes for supercapacitor applications, Electrochimica Acta, 397 (2021) 139241.

  5. A. Landers, H. Peng, D. Koshy, S. Lee, J. Feaster, J. Lin, J. Beeman, D. Higgins, J. Yano, W. Drisdell, R. Davis, M. Bajdich, F. Abild-Pedersen, A. Mehta, T. Jaramillo, C. Hahn, “Dynamics and Hysteresis of Hydrogen Intercalation and Deintercalation in Palladium Electrodes: A Multimodal In Situ X‑ray Diffraction, Coulometry, and Computational Study”, Chemistry of Materials, 33 (2021) 5872.

  6. W. Alnoush, R. Black, D. Higgins*, “Judicious selection, validation, and use of reference electrodes for in situ and operando electrocatalysis studies”, Chem Catalysis, 2667 (2021) 1093.

  7. L. Shahcheraghi, C. Zhang, H. Lee, M. Cusack-Striepe, F. Ismail, D. Higgins*, “Identifying Activity and Selectivity Trends for the Electrosynthesis of Hydrogen Peroxide via Oxygen Reduction on Nickel–Nitrogen–Carbon Catalysts”, The Journal of Physical Chemistry C, 125 (2021) 15830.

  8. J. Abed, S. Ahmadi, L. Laverdue, A. Abdellah, C. O’Brien, K. Cole, P. Sobrino, D. Sinton, D. Higgins, N. Mosey, S. Thorpe, E. Sargent, “In situ Activation of Low Ni-Co Loadings Enables Water Oxidation Electrocatalysts Durable at High Current Densities”, Advanced Materials, Accepted (2021).

  9. S. Xu, Z. Wang, S. Dull, Y. Liu, D. Lee, J. Pacheco, M. Orazov, P. Vullum, A. Dadlani, O. Vinogradova, P. Schindler, Q. Tam, T. Schladt, T. Mueller, S. Kirsch, G. Huebner, D. Higgins, J. Torgersen, V. Viswanathan, T. Jaramillo, F. Prinz, “Direct Integration of Strained-Pt Catalysts into Proton-Exchange-Membrane Fuel Cells with Atomic Layer Deposition”, Advanced Materials, 33 (2021) 2007885.

  10. M. Ben-Naim, Y. Liu, M. Burke Stevens, K. Lee, M. Wette, A. Boubnov, A. Trofimov, A. Ievlev, A. Belianinov, R. David, B. Clemens, S. Bare, Y. Hikita, H. Hwang, D. Higgins (corresponding author), R. Sinclair, T. Jaramillo, “Understanding Degradation Mechanisms in SrIrO3 Oxygen Evolution Electrocatalysts: Chemical and Structural Microscopy at the Nanoscale”, Advanced Functional Materials, 31 (2021) 34.

  11. D. Koshy, S. Nathan, A. Asundi, A. Abdellah, S. Dull, D. Cullen, D. Higgins, Z. Bao, S. Bent, T. Jaramillo, “Bridging thermal catalysis and electrocatalysis: Catalyzing CO2 conversion with carbon‐based materials”, Angewandte Chemie International Edition, 60 (2021) 32.

  12. S. Dull, S. Xu, T. Goh, D. Lee, D. Higgins, M. Orazov, D. Koshy, P. Vullum, S. Kirsch, G. Huebner, J. Torgersen, T. Jaramillo, F. Prinz, “Bottom-Up Fabrication of Oxygen Reduction Electrodes with Atomic Layer Deposition for High-Power-Density PEMFCs”, Cell Reports Physical Science, 2 (2021) 100297.

  13. D. Koshy, S. Chen, D. Lee, M. Burke Stevens, A. Abdellah, S. Dull, G. Chen, D. Nordlund, A. Gallo, C. Hahn, D. Higgins (corresponding author), Z. Bao, T. Jaramillo, “Understanding the Origin of Highly Selective CO2 Electroreduction to CO on Ni, N-doped Carbon Catalysts”, Angewandte Chemie International Edition, 4043 (2020) 59.

  14. B. Gibbons, M. Wette, M. Burke Stevens, R. Davis, S. Siahrostami, M. Kreider, A. Mehta, D. Higgins (corresponding author), B. Clemens, T. Jaramillo, “In Situ X-Ray Absorption Spectroscopy Disentangles the Roles of Copper and Silver in a Bimetallic Catalyst for the Oxygen Reduction Reaction”, Chemistry of Materials, 1819 (2020) 32.

  15. Q. Shi, S. Hwang, H. Yang, F. Ismail, D. Su, D. Higgins (corresponding author), G. Wu, “Supported and Coordinated Single Metal Site Electrocatalysts”, Materials Today, 37 (2020) 93.

  16. M. Ben-Naim, D. Palm, A. Strickler, A. Nielander, J. Sanchez, L. King, D. Higgins (corresponding author), T. Jaramillo, “A Spin Coating Method to Deposit Iridium-Based Catalysts onto Silicon for Water Oxidation Photoanodes”, ACS Applied Materials and Interfaces, 12 (2020) 5901.

  17. L. Wang, D. Higgins, Y. Ji, C. Morales-Guio, K. Chan, C. Hahn, T. Jaramillo, “Selective Electrochemical Reduction of CO to Acetaldehyde over CuAg Bimetallic Electrodes”, Proceedings of the National Academy of Science, Accepted (2019).

  18. D. Higgins, C. Hahn, C. Xiang, T. Jaramillo, A. Weber, “Gas-Diffusion Electrodes for Carbon Dioxide Reduction: A New Paradigm”, ACS Energy Letters, 4 (2019) 317.

  19. P. de Luna, C. Hahn, D. Higgins, S. Jaffer, T. Jaramillo, E. Sargent, "What would it take for renewably-powered electrosynthesis to displace petrochemical processes?", Science, 364 (2019) eaav3506.

  20. M. Boyd, A. Latimer, C. Dickens, A. Nielander, C. Hahn, J. Norskov, D. Higgins(corresponding author), T. Jaramillo, “Electro-Oxidation of Methane on Platinum under Ambient Conditions”, ACS Catalysis, 9 (2019) 7578.

  21. L. Wang, D. Higgins, Y. Ji, C. Morales-Guio, K. Chan, C. Hahn, T. Jaramillo, “Selective Electrochemical Reduction of CO to Acetaldehyde over CuAg Bimetallic Electrodes”, Proceedings of the National Academy of Science, Accepted (2019).

  22. A. Strickler, D. Higgins, T. Jaramillo, “Crystalline Strontium Iridate Particle Catalysts for Enhanced Oxygen Evolution in Acid”, ACS Applied Energy Materials, 117 (2019) 23.

  23. L. Wang, S. Nitopi, A. Wong, J. Snider, A. Nielander, C. Morales-Guio, M. Orazov, D. Higgins, C. Hahn, T. Jaramillo, "Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area", Nature Catalysis, 702 (2019) 2.

  24. S. Scott, T. Hogg, A. Landers, T. Maagaard, E. Bertheussen, J. Lin, R. Davis, J. Beeman, D. Higgins, W. Drisdell, C. Hahn, A. Mehta, B. Seger, T. Jaramillo, I. Chorkendorff, "Absence of Oxidized Phases in Cu Under CO Reduction Conditions", ACS Energy Letters, 4 (2019) 803.

  25. M. Farmand, A. Landers, J. Lin, J. Feaster, J. Beeman, Y. Ye, E. Clark, D. Higgins, J. Yano, R. Davis, A. Mehta, T. Jaramillo, C. Hahn, W. Drisdell, “Electrochemical Flow Cell Enabling Operando Probing of Electrocatalyst Surfaces by X-Ray Spectroscopy and Diffraction”, Physical Chemistry Chemical Physics, 21 (2019) 5402.

  26. D. Higgins, A. Landers, Y. Ji, S. Nitopi, C. Morales-Guio, L. Wang, K. Chan, C. Hahn, T. Jaramillo, “Guiding Electrochemical Carbon Dioxide Reduction Towards Carbonyls Using Copper Silver Thin Films with Interphase Miscibility”, ACS Energy Letters, 3 (2018) 2947.

  27. D. Higgins, M. Wette, B. Gibbons, S. Siahrostami, C. Hahn, M. Escudero-Escribano, M. Garcia-Melchor, Z. Ulissi, R. Davis, A. Mehta, B. Clemens, J. Norskov, T. Jaramillo, “Copper Silver Thin Films with Metastable Miscibility for Oxygen Reduction Electrocatalysis in Alkaline Electrolytes”, ACS Applied Energy Materials, 5 (2018) 1990.

  28. S. Xu, Y. Kim, J. Park, D. Higgins, S. Shen, P. Schindler, D. Thian, J. Provine, J. Torgersen, T. Graf, T. Schladt, M. Orazov, B. Liu, T. Jaramillo, F. Prinz, “Extending the Limits of Pt/C Catalysts with Passivation-Gas-Incorporated Atomic Layer Deposition”, Nature Catalysis, 1 (2018) 624.

  29. L. Wang, S. Nitopi, E. Bertheussen, M. Orazov, C. Morales-Guio, X. Liu, D. Higgins, K. Chan, J. Norskov, C. Hahn, T. Jaramillo, "Electrochemical Carbon Monoxide Reduction on Polycrystalline Copper: Effects of Potential, Pressure, and pH on Selectivity toward Multicarbon and Oxygenated Products", ACS Catalysis, 8 (2018) 7445.

  30. S. Chen, Z. Chen, S. Siahrostami, D. Higgins, D. Nordlund, D. Sokaras, T. Kim, Y. Liu, X. Yan, E. Nillson, R. Sinclair, J. Norskov, T. Jaramillo, Z. Bao, “Designing Boron Nitride Islands in Carbon Materials for Efficient Electrochemical Synthesis of Hydrogen Peroxide”, Journal of the American Chemical Society, 25 (2018) 7581.

  31. A. Jackson, A. Strickler, D. Higgins, T. Jaramillo, “Engineering Ru@Pt Core-Shell Catalysts for Enhanced Electrochemical Oxygen Reduction Mass Activity and Stability”, Nanomaterials, 8 (2018) 38.

  32. R. Batmaz, F. Hassan, D. Higgins, Z. Cano, X. Xiao, Z. Chen, “Highly durable 3D conductive matrixed silicon anode for lithium-ion batteries”, Journal of Power Sources, 407 (2018) 84.

  33. H. Chung, D. Cullen, D. Higgins, B. Sneed, E. Holby, K. More, P. Zelenay, “Direct Atomic-Level Insight into the Active Sites of a High-Performance PGM free ORR Catalyst”, Science, 357 (2017) 479.

  34. C. Hahn, T. Hatsukade, Y. Kim, A. Vailionis, J. Baricuatro, D. Higgins, S. Nitopi, M. Soriaga, T. Jaramillo, “Engineering Cu surfaces for the electrocatalytic conversion of CO2: Controlling selectivity towards oxygenates and hydrocarbons”, Proceedings of the National Academy of Sciences, 114 (2017) 5918.

  35. S. Chen, Z. Chen, S. Siahrostami, T. Kim, D. Nordlund, D. Sokaras, S. Nowak, J. To, D. Higgins, R. Sinclair, J. Norskov, T. Jaramillo, Z. Bao, “Defective Carbon-Based Materials for the Electrochemical Synthesis of Hydrogen Peroxide”, ACS Sustainable Chemistry & Energy, 6 (2017) 311.

  36. S. Xu, Y. Kim, D. Higgins, M. Yusuf, T. Jaramillo, F. Prinz, “Building upon the Koutecky-Levich Equation for Evaluation of Next-Generation Oxygen Reduction Reaction Catalysts”, Electrochimica Acta, 255 (2017) 99-108.

  37. X. Fu, P. Zamani, J. Choi, F. Hassan, G. Jiang, D. Higgins, Y. Zhang, A. Hoque, Z. Chen, “In Situ Polymer Graphenization Ingrained with Nanoporosity in Nitrogenous Electrocatalyst Boosting the Performance of Polymer Electrolyte Membrane Fuel Cells”, Advanced Materials, 29 (2017) 1604456.

  38. X. Fu, F. Hassan, P. Zamani, G. Jiang, D. Higgins, J. Choi, X. Wang, P. Xu, Y. Liu, Z. Chen, “Engineered architecture of nitrogenous graphene encapsulating porous carbon with nano-channel reactors enhancing the PEM fuel cell performance”, Nano Energy, 42 (2017) 249-256.

  39. D. Higgins, P. Zamani, A. Yu, Z. Chen, “The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress”, Energy & Environmental Science, 9 (2016) 357-390.

  40. P. Zamani, D. Higgins, F. Hassan, X. Fu, J. Choi, A. Hoque, G. Jiang, Z. Chen, “Highly active and porous graphene encapsulating carbon nanotubes as a non-precious oxygen reduction electrocatalyst for hydrogen-air fuel cells”, Nano Energy, 26 (2016) 267-275.

  41. R. Wang, D. Higgins, D. Lee, S. Prabhudev, F. Hassan, V. Chabot, G. Lui, G. Jiang, J. Choi, L. Rasenthiram, J. Fu, G. Botton, Z. Chen, “Biomimetic design of monolithic fuel cell electrodes with hierarchical structures”, Nano Energy, 20 (2016) 57-67.

  42. J. Vazquez-Arenaz, A. Galano, D. Lee, D. Higgins, A. Guevera-Garcia, Z. Chen, “Theoretical and Experimental Studies of Highly Active Graphene Nanosheets to determine Catalytic Nitrogen Sites Responsible for the Oxygen Reduction Reaction in Alkaline Media”, Journal of Materials Chemistry A, 4 (2016) 976-990.

  43. D. Yang, Z. Yan, B. Li, D. Higgins, J. Wang, H. Lv, Z. Chen, C. Zhang, “Highly active and durable Pt–Co nanowire networks catalyst for the oxygen reduction reaction in PEMFCs”, International Journal of Hydrogen Energy, 41 (2016) 18592-18601.

  44. D. Higgins, F. Hassan, M. Seo, J. Choi, A. Hoque, D. Lee, Z. Chen, “Shape-controlled octahedral cobalt disulfide nanoparticles supported on nitrogen and sulfur-doped graphene/carbon nanotube composites for oxygen reduction in acidic electrolyte”, Journal of Materials Chemistry A, 3 (2015) 6340-6350. Featured on the back cover of the associated issue.

  45. R. Wang, D. Higgins, S. Prabhudev, D. Lee, J. Choi, A. Hoque, G. Botton, Z. Chen, “Synthesis and structural evolution of Pt nanotubular skeletons: revealing the source of instability for banostructured electrocatalysts”, Journal of Materials Chemistry A, 3 (2015) 12663-12671.

  46. J. Choi, D. Higgins, G. Jiang, R. Hsu, J. Qiao, Z. Chen, “Iron-tetracyanobenzene complex derived non-precious catalyst for oxygen reduction reaction”, Electrochimica Acta, 20 (2015) 224-229.

  47. A. Hoque, F. Hassan, D. Higgins, J. Choi, M. Pritzker, S. Knights, S. Ye, Z. Chen, “Multigrain platinum nanowires consisting of oriented nanoparticles anchored on sulfur-doped graphene as a highly active and durable oxygen reduction electrocatalyst”, Advanced Materials, 27 (2015) 1229-1234. Accepted as VIP article and featured on front-piece of the associated issue.

  48. Q. Li, H. Pan, D. Higgins, R. Cao, G. Zhang, H. Lv, K. Wu, J. Cho, G. Wu, “Metal-Organic Framework Derived Bamboo-like Nitrogen-Doped Graphene Tubes as an Active Matrix for Hybrid Oxygen-Reduction Electrocatalysts”, Small, 11 (2014) 1443-1452.

  49. D. Higgins, R. Wang, A. Hoque, P. Zamani, S. Abureden, Z. Chen, “Morphology and composition controlled platinum-cobalt alloy nanowires prepared by electrospinning as oxygen reduction catalyst”, Nano Energy, 10 (2014) 135-143.

  50. D. Higgins, A. Hoque, M. Seo, R. Wang, F. Hassan, J. Choi, M. Pritzker, A. Yu, J. Zhang, Z. Chen, “Development and Simulation of Sulfur-doped Graphene Supported Platinum with Exemplary Stability and Activity Towards Oxygen Reduction”, Advanced Functional Materials, 24 (2014) 4325-4336. Accepted as VIP article and featured on front-piece of the associated issue.

  51. D. Higgins, A. Hoque, F. Hassan, J. Choi, B. Kim, Z. Chen, “Oxygen Reduction on Graphene-Carbon Nanotube Composites Doped Sequentially with Nitrogen and Sulfur”, ACS Catalysis, 4 (2014) 2734-2740.

  52. V. Chabot, D. Higgins, A. Yu, X. Xiao, Z. Chen, J. Zhang, “A Review of Graphene and Graphene Oxide Sponge: Material Synthesis and Applications”, Energy & Environmental Science, 7 (2014) 1564-1596.

  53. D. Higgins, G. Wu, H. Chung, U. Martinez, S. Ma, Z. Chen, P. Zelenay, “Manganese-Based Non-Precious Metal Catalyst for Oxygen Reduction in Acidic Media”, ECS Transactions, 61 (2014) 35-42.

  54. M. Seo, D. Higgins, G. Jiang, S. Choi, B. Han, Z. Chen, “Theoretical insight into highly durable iron phthalocyanine derived non-precious catalyst for oxygen reduction reaction”, Journal of Materials Chemistry A, Accepted (2014) Manuscript ID: TA-ART-07-2014-003511.

  55. P. Zamani, D. Higgins, F. Hassan, G. Jiang, J. Wu, S. Abureden, Z. Chen, “Electrospun Iron–Polyaniline–Polyacrylonitrile Derived Nanofibers as Non–Precious Oxygen Reduction Reaction Catalysts for PEM Fuel Cells”, Electrochimica Acta, 139 (2014) 111-116.

  56. M. Hoque, D. Higgins, F. Hassan, J. Choi, M. Pritzker, Z. Chen, “Tin oxide-mesoporous carbon composites as highly effective platinum catalyst support for ethanol oxidation and oxygen reduction”, Electrochimica Acta, 121 (2014) 421-427.

  57. B. Li, D. Higgins, Q. Xiao, D. Yang, C. Zhang, M. Cai, Z. Chen, J. Ma, “The durability of carbon supported Pt nanowire as novel cathode catalyst for a 1.5 kW PEMFC stack”, Applied Catalysis B: Environmental, 162 (2014) 133-140.

  58. J. Liao, X. Xiao, D. Higgins, G. Lui, Z. Chen, “Self-supported Single Crystalline H2Ti8O17 Nanoarrays as Integrated Three-Dimensional Anodes for Lithium-ion Microbatteries”, ACS Applied Materials & Interfaces, 6 (2014) 568-474.

  59. B. Li, Z. Yan, D. Higgins, D. Yang, Z. Chen, J. Ma, “Carbon supported Pt nanowire as novel cathode catalysts for proton exchange membrane fuel cells”, Journal of Power Sources, 262 (2014) 488-493.

  60. D. Higgins, Z. Chen, D. Lee,  Z. Chen, “Activated and nitrogen-doped exfoliated graphene as air electrodes for metal-air battery applications”, Journal of Materials Chemistry A, 1 (2013) 2639-2645.

  61. D. Higgins, Z. Chen, “Recent progress in non-precious metal catalysts for PEM fuel cell applications”, Canadian Journal of Chemical Engineering, 91 (2013) 1881-1895.

  62. J. Liao, D. Higgins, G. Liu, V. Chabot, X. Xiao, Z. Chen, “Multifunctional TiO2@C/MnO2 Core@Double-shell Nanowire Array as a High Performance 3D Electrode for Li-ion batteries”, Nano Letters, 13 (2013) 5467-5473.

  63. Y. Liu, D. Higgins, J. Wu, M. Fowler, Z. Chen, “Cubic spinel cobalt oxide/multi-walled carbon nanotube composites as an efficient bifunctional electrocatalyst for oxygen reaction”, Electrochemistry Communications, 34 (2013) 125-129.

  64. R. Wang, D. Higgins, M. Hoque, F, Hassan, D. Lee, J. Choi, H. Zarrin, B. Kim, Z. Chen, “Controlled Growth of Platinum Nanowire Arrays on Sulfur Doped Graphene as High Performance Electrocatalysts”, Scientific Reports, 3 (2013) 2431-2437.

  65.  J. Liao, X. Xiao, D. Higgins, D. Lee, F. Hassan, Z. Chen, “Hierarchical Li4Ti5O12-TiO2 composite microsphere consisting of nanocrystals for high power Li-ion batteries”, Electrochimica Acta, 108 (2013) 104-111.

  66. B. Kim, D. Lee, J. Wu, D. Higgins, A. Yu, Z. Chen, “Iron- and Nitrogen-functionalized Graphene Nanosheet and Nanoshell Composites as a Highly Active Electrocatalyst for Oxygen Reduction Reaction”, The Journal of Physical Chemistry C, 50 (2013) 26501-26508.

  67. D. Lee, H. Park, D. Higgins, L. Nazar, Z. Chen, “Highly Active Graphene Nanosheets Prepared via Extremely Rapid Heating as Efficient Zinc-air Battery Electrode Material”, Journal of the Electrochemical Society, 160 (2013) F910-F915.

  68. B. Li, D. Higgins, D. Yang, R. Lin, Z. Yu, J. Ma, “Carbon supported Ir nanoparticles modified and dealloyed with M (M = V, Co, Ni and Ti) as anode catalysts for polymer electrolyte fuel cells”, International Journal of Hydrogen Energy, 38 (2013) 5813-5822.

  69.  D. Higgins, J. Choi, J. Wu, A. Lopez, Z. Chen, “Titanium nitride carbon nanotube core-shell composites as effective electrocatalyst supports for low temperature fuel cells”, Journal of Materials Chemistry, 22 (2012) 3727-3732.

  70. D. Higgins, J. Wu, W. Li, Z. Chen, “Cyanamide derived thin film on carbon nanotubes as metal free oxygen reduction reaction electrocatalyst”, Electrochimica Acta, 59 (2012) 8-13.

  71. D. Higgins, Z. Chen, S. Ye, S. Knights, “Highly Durable Platinum-Cobalt Nanowires by Microwave Irradiation as Oxygen Reduction Catalyst for PEM Fuel Cell”, Electrochemical and Solid-State Letters, 6 (2012) B83-B85.

  72. D. Higgins, Z. Chen, “Coaxial TiN-CNT Composites as Effective Low Temperature Fuel Cell Electrocatalyst Supports”, ECS Transactions, 50 (2012) 1801-1806.

  73. Z. Chen, A. Yu, D. Higgins, H. Wang, H. Liu, Z. Chen, “Highly Active and Durable Core-Corona Structured Bifunctional Catalyst for Rechargeable Metal-Air Battery Application”, Nano Letters, 69 (2012) 1946-1952. Media highlight:

  74. J. Choi, D. Higgins, Z. Chen, “Highly Durable Graphene Nanosheet Supported Iron Catalyst for Oxygen Reduction Reaction in PEM Fuel Cells”, Journal of the Electrochemical Society, 159 (2012) B87-B90.

  75. B. Li, D. Higgins, D. Yang, R. Lin, Z. Yu, J. Ma, “New non-platinum Ir-V-Mo electro-catalyst, catalytic activity and CO tolerance in hydrogen oxidation reaction”, International Journal of Hydrogen Energy, 37 (2012) 18843-18850.

  76. B. Li, D. Higgins, S. Zhu, H. Li, H. Wang, J. Ma, Z. Chen, “Highly active Pt-Ru nanowire network catalysts for the methanol oxidation reaction”, Catalysis Communications, 18 (2012) 51-54.

  77. J. Vazquez, D. Higgins, Z. Chen, M. Fowler, Z. Chen, “Mechanistic Analysis of Highly Active Nitrogen-Doped Carbon Nanotubes for the Oxygen Reduction Reaction”, Journal of Power Sources, 205 (2012) 215-221.

  78. W. Li, J. Wu, D. Higgins, J. Choi, Z. Chen, “Determination of Iron Active Sites in Pyrolyzed Iron Based Catalysts for Oxygen Reduction Reaction”, ACS Catalysis, 2 (2012) 2761-2768.

  79. J. Wu, D. Higgins, Z. Chen, “Electrospun Iron/Polyacrylonitride Derived Nanofibrous Catalysts for Oxygen Reduction Reaction”, ECS Transactions, 50 (2012) 1807-1814.

  80. J. Wu, H. Park, A. Yu, D. Higgins,  Z. Chen, “Facile Synthesis and Evaluation of Nanofibrous Iron-carbon Based Non-precious Oxygen Reduction Reaction Catalysts for Li-O2 Battery Applications”, The Journal of Physical Chemistry C, 17 (2012) 9427-9432.

  81. D. Higgins, Z. Chen, Z. Chen, “Nitrogen doped carbon nanotubes synthesized from aliphatic diamines for the oxygen reduction reaction”, Electrochimica Acta, 56 (2011) 1570-1575.

  82. Z. Chen, D. Higgins, A. Yu, L. Zhang, J. Zhang, “A Review on Non-precious Metal Electrocatalysts for PEM Fuel Cells”, Energy & Environmental Science, 4 (2011) 3167-3192.

  83. D. Meza, D. Higgins, J. Wu, Z. Chen, “One-Step Synthesized Tungsten Oxide/Carbon Nanotube Composites as Pt Catlayst Supports for Oxygen Reduction Reaction in proton Exchange Membrane Fuel Cells”, Journal of Nanoengineering and Nanomanufacturing, 1 (2011) 280-286.

  84. A. Yu, H. Park, A. Davies, D. Higgins, Z. Chen, X. Xiao, “Free-Standing Layer-By-Layer Hybrid Thin Film of Graphene-MnO2 Nanotube as Anode for Lithium Ion Batteries”. The Journal of Physical Chemistry Letters, 15 (2011) 1855-1860.

  85. H. Zarrin, D. Higgins, Y. Jun, M. Fowler, Z. Chen, “Functionalized Graphene Oxide Nanocomposite Membrane for Low Humidity and High Temperature Proton Exchange Membrane Fuel Cells”, The Journal of Physical Chemistry C, 115 (2011) 20774-20781.

  86. J. Wu, W. Li, D. Higgins, Z. Chen, “Heat-Treated Non-Precious Catalyst Using Fe and Nitrogen-rich 2,3,7,8-Tetra(pyridin-2-yl)pyrazino[2,3-g]quinoxaline Coordinated Complex for Oxygen Reduction Reaction in PEM Fuel Cells”, The Journal of Physical Chemistry C, 115 (2011) 18856-18862.

  87. S. Zhu, Z. Chen, B. Li, D. Higgins, H. Wang, H. Li, Z. Chen, “Nitrogen-doped Carbon Nanotubes as Air Cathode Catalysts in Zinc-Air Battery “, Electrochimica Acta, 56 (2011) 5080-5084.

  88. D. Higgins, D. Meza, Z. Chen, “Nitrogen Doped Carbon Nanotubes as Platinum Catalyst Supports for Oxygen Reduction Reaction in PEM Fuel Cells”, The Journal of Physical Chemistry C, 114 (2010) 21981-21988.

  89. D. Higgins, Z. Chen, “Nitrogen Doped Carbon Nanotube Thin Films as Efficient Oxygen Reduction Catalyst for Alkaline Anion Exchange Membrane Fuel Cell”, ECS Transactions, 28 (2010) 63-68.

  90. W. Li, A. Yu, D. Higgins, B. Llanos, Z. Chen, “Biologically Inspired Highly Durable Iron Phthalocyanine Catalysts for Oxygen Reduction Reaction in PEM Fuel Cells”, Journal of the American Chemical Society, 132 (2010) 17056-17058.

  91. Z. Chen, D. Higgins, Z. Chen, “Nitrogen doped carbon nanotubes and their impact on the oxygen reduction reaction in fuel cells”, Carbon, 48 (2010) 3057-3065.

  92. Z. Chen, D. Higgins, Z. Chen, “Electrocatalytic activity of nitrogen doped carbon nanotubes with different morphologies for oxygen reduction reaction”, Electrochimica Acta, 55 (2010) 4799-4804.

  93. R. Hsu, D. Higgins, Z. Chen, “Tin-oxide-coated single-walled carbon nanotube bundles supporting platinum electrocatalysts for direct ethanol fuel cells,” Nanotechnology, 21 (2010) 165705-165709.

  94. Z. Chen, D. Higgins, R. Hsu, H. Tao, Z. Chen, “Highly Active Nitrogen Doped Carbon Nanotube for Oxygen Reduction Reaction in Fuel Cell Applications”, The Journal of Physical Chemistry C, 113 (2009) 21008-21013.


Book Chapters

  1. H. Chung, G. Wu, D. Higgins, P. Zamani, Z. Chen, P. Zelenay, “Heat-Treated Non-Precious Metal Catalysts for Oxygen Reduction”, Electrochemistry of N4 Macrocyclic Metal Complexes. Springer, in press.

  2. W. Chu, D. Higgins, Z. Chen, R. Cai, “Non-precious Metal Oxides and Metal Carbides for ORR in Alkaline-Based Fuel Cells”, Non-Noble Metal Fuel Cell Catalysts. Wiley-VCH Verlag GmbH & Co. (2014) 357-388.

  3. D. Higgins, Z. Chen, “Recent Development of Non-precious Metal Catalysts”, Electrocatalysis in Fuel Cells: A Non and Low Platinum Approach. Springer-Verlag London (2013) 247-269.

  4. A. Yu, V. Chabot, J. Zhang. Author contributions from D. Higgins to Chapter 9: “Challenges and Perspectives of Electrochemical Supercapacitors”, Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications. Taylor & Francis Group (2013) 335-348.